
Introduction to
HTML & CSS

Instructor: Beck Johnson

Week 4

• Review borders, inline/block, and class/id

• Layout – floats and flex

• Using web fonts

• Responsive design

SESSION OVERVIEW

REVIEW!

{ } css box model

Content: stuff in the box

Padding: space inside the box

Border: sides of the box

Margin: space between multiple boxes

{ } border

Between margin and padding, you can set a border

• Width (usually in pixels)
• Border style (solid, dotted, dashed, etc)
• Color

p

border: 2px dotted #ff0000;

}

{ } border-radius

To make an element appear curved, use the property
border-radius

• The value is a number (in px or em) or percentage

• You can use border-radius even if you don’t
explicitly set a border

li {
border-radius: 50%;
height: 3em;
width: 3em;

}

{ } block elements

Block elements
• Expand naturally to fill their parent container
• Take up a full line
• Can have margin and/or padding

{ } inline elements

inline elements
• Flow along with text content
• Ignores top and bottom margin/padding
• Honors left and right margin/padding

{ } inline-block elements

Inline-block elements
• A hybrid of block and inline
• Flow along with text content
• Has height, width, margin, and padding

{} classes and ids

You can add class and id to any HTML

element to identify it for styling.

• You decide the class and id values – be

descriptive!

<p class="important">Big text</p>

<p id="anyLettersOrNumbersOr_Or-">Still totally
valid</p>

{} classes

Multiple elements can have the same class

<p class="muscles">Schwarzenegger</p>
<p class="muscles">The Rock</p>

In CSS, target a class with a period

.muscles { display: flex; }

{} ids

Only one element per page can use the same id

<div id="tower-of-pisa">There can be only
one</div>

In CSS, target an id with a hash

#tower-of-pisa { font-style: italic; }

An id on an element lets you link to it directly
using a link href starting with a #

{} class vs id

QUESTIONS?

WEB LAYOUTS

WEB lAYOUTS

With CSS, we can use a variety of properties to
arrange elements on the screen by adjusting the flow
of the page.

Basically, you can put elements anywhere…which can be
both a good and a bad thing!

3 web layout properties

• display: dictates how elements behave within

the box model

• float: moves elements around within the

page flow

• position: takes elements entirely out of the

page flow

Display property

The display property tells the browser what type

of box model to use:

• inline
• inline-block
• block
• flex

This changes how padding, margin, height and
width affect an element.

You also can set display: none to hide an

element entirely.

CSS Floats

Up to now, elements have displayed sequentially, in the
order that you placed them in your HTML.

The float property takes an element out of the normal

flow and “floats” it to the left or right side of its container.

• This allows other content
to flow around it

img { float: left; }

CSS Floats

The three values for float are:

• left
• right
• none

By default, elements are
float: none

CSS Floats

img { float: right; }

CSS Floats

img { float: left; }

Flows before rows

Where you place your floated element in your HTML can
cause different results.

Live demo here.

<div id="container">

<p>This is some text contained…</p>

</div>

https://kweeket.github.io/demos/float.html

Flows before rows

What happens if we move the image below the paragraph?

<div id="container">
<p>This is some text contained…</p>

</div>

A general rule is float first.

• Place floated elements before
any non-floated elements the
float interacts with

CSS Floats

float can be used to float text around

images, but it also can be used to create
entire page layouts.

CSS Floats

For example, this layout was built using float.

CSS Floats

<div>

<h2 class="bio">By Beck Johnson</h2>
<p class="bio">Beck Johnson is… </p>

</div>

CSS Floats

.avatar { float: left; } .bio { float: right; }

Let’s try that…

CSS Floats

https://kweeket.github.io/dev-101/demos/float-bio.html

CSS Floats

The container thinks it has no content!

• It collapsed to the size of its padding (you can
see the top and bottom border)

• The floated content is spilling out

CSS Floats

CSS Floats

If you float an element, it is no longer in the
normal document flow.

If all elements in a container are floated, that
means that the container is effectively
“empty.”

CSS Floats

How to fix floats?

How to fix floats?

There are 2 ways to fix this:

1. Apply the CSS rule clear: both to an element

after the floated content

2. Apply a CSS rule using the property overflow to

the container

The CLEAR PROPERTY

The clear property is the sister property to float

• It doesn’t do much until there are floated elements on the page

• An element with clear applied to it will force itself below the

floated element

• Everything after that will be
back in the normal flow

• This “stretches” out the
container and keeps it from
collapsing

The CLEAR PROPERTY

clear has similar values to float:

• clear: none – the element does not move down to clear

past floating elements (this is the default value)

• clear: both – the element is moved down to clear both

right- and left-floated elements

The CLEAR PROPERTY

The CLEAR PROPERTY

Sometimes, you want to let some content after a clear
continue floating, but not other content:

• clear: left – only clear left-floated elements

• clear: right – only clear right-floated elements

The CLEAR PROPERTY

The CLEAR PROPERTY

So to solve our problem, you could add this empty div after
the bio container:

<div style="clear: both"></div>

(We could apply the class to any type of element, but the
benefit of using a div is that it has no style of its own.)

The CLEAR PROPERTY

The overflow PROPERTY

The other way to force a container to expand around
floated content is to apply a CSS rule with overflow
to the container that the floated content is inside.

Any valid value for overflow will cause floated

content to stretch out the container

• Too complicated to explain, but it basically forces
the container to re-assess the content inside it

The overflow PROPERTY

overflow is a CSS property that governs how

content looks when it breaks out of its container.

By default, elements have
overflow: visible,

which means all content
is fully visible

• Even if that means
overflowing its
container!

The overflow PROPERTY

The overflow PROPERTY

overflow: scroll makes scrollbars appear both horizontally

and vertically…even if they don’t need to be there.

• None of the content that would
overflow appears outside the box

overflow: hidden cuts off any content that “sticks out” of

its box

• No way to scroll, so content is
no longer accessible

The overflow PROPERTY

The overflow PROPERTY

overflow: auto only adds scrollbars when the content

requires it (which may mean no scrollbars are added at all)

The overflow PROPERTY

The overflow PROPERTY

So to solve our problem, you could add this CSS rule to the
floated div:

.bio { overflow: visible; }

The overflow PROPERTY

PRACTICE TIME!

Create a container that has an image floated
to the side of some text.

• Give the container a background color, gradient,
or borders (to make sure floated content is really
clearing properly and doesn’t just “look” cleared)

• Try both techniques to force the container to
expand around floated content

• Apply box model properties like padding and
margin so that your content looks nice

ASSIGNMENT

WEB LAYOUTS

Layout with flexbox

Instead of using float to change the layout of your
page, you can use display: flex

Adding display: flex to a container puts every direct

child inside it one line

Layout with flexbox

<section class="filter-container">

<p><i class="fa fa-sliders-h"></i>Categories</p>

<div>
<div class="filter-button">Industry</div>
<div class="filter-button">Offerings</div>
<div class="filter-button">Capabilities</div>

</div>

Clear All

</section>

Layout with flexbox

With no flex at all, this is how that layout looks:

Layout with flexbox

Using float instead of display: flex

Layout with flexbox

.filter-container { display: flex; }

Justify-content

justify-content: controls how space is distributed

between flex children horizontally

justify-content: center puts everything together in the middle

flex-start and flex-end move everything to either the

beginning or end of the row

Justify-content

justify-content: space-between spreads all the items out evenly,
with the first and last items flush against the ends of the container

justify-content: space-around distributes all the items with
equal space around them

Align-items

align-items: controls how items are aligned relative to one

another vertically

flex-start and flex-end align all children to either the top or bottom

of their container

align-items: stretch makes all

children stretch to the same height,
(unless they already have a width
defined by CSS)

Align-items

align-items: center makes all children

vertically centered, with equal space on top
and bottom

align-items: baseline vertically centers

children so that their text lines up

If there is no text, the bottoms of the items
will be aligned instead

Layout with flexbox

Pros
• Don’t have to worry about the clearing problem

• Have better control of how children are aligned

• Can use CSS to change the order in which children are shown

Cons
• May require extra markup around flex children to prevent

everything from becoming flex

• May require extra markup to create a flex parent

• Limited support in old browsers (Internet Explorer 9, 8, 7)

PRACTICE TIME!

Using last weeks last “match the comp” html file

• Add a <main> element (if you don’t already have one)

that surrounds your card markup, directly after
<body>

• Copy and paste the cards until there are at least 3
• Note: if you added a height to the card you will want to

remove it

• Give main { display: flex; }

• Play with flex properties until your cards look nice

ASSIGNMENT

Web fonts

Web fonts

Remember that font-family looks for a font

installed on the user’s local machine.

body { font-family: Tahoma, sans-serif; }

If the Tahoma font isn’t found, the browser will
default to a generic sans-serif font instead.

What if you want to use an interesting font that most
people aren’t likely to have installed?

Web fonts

The absolutely easiest way to get custom fonts is to
link to a CDN font stylesheet in the head of your
page:

<link href="https://fonts.googleapis.com/css?family=Roboto"
rel="stylesheet">

Remember that CDN means “Content Delivery Network”

• A fancy way of saying a big, reliable company hosts
the file for you

• Google hosts 100s of free fonts

Web fonts

Web fonts

<link href="https://fonts.googleapis.com/css?family=Roboto"
rel="stylesheet">

Once you include a font stylesheet from a CDN,
you can refer to the font in a font-family rule,

just like you would a web-safe font:

p { font-family: Roboto, sans-serif; }

Web fonts

Web fonts

When you choose a font Google will tell you what
name to use for it in your CSS

Web fonts

Web fonts

https://fonts.google.com/

https://fonts.google.com/

Web fonts

cons

• Relies on a 3rd party to provide assets

• If the request times out, the font won’t download (so
always provide fallbacks!)

pros

• Extremely easy to get working

• Possibility that user already has the font in their web
cache due to visiting other sites that use the same font

Web fonts

icon fonts

Font Awesome is a free icon font that is used in many
real-world projects.

An icon font means letters have been replaced with
vector images

• So to color or re-size icons on your site, just use the
CSS font properties we already learned.

http://fontawesome.io/icons/

To quickly start using Font Awesome, add this stylesheet to
the head of your page:

<link rel="stylesheet"
href="https://use.fontawesome.com/releases/v5.7.2/css/all.css">

Click an icon from the Font Awesome website, and copy the
markup they provide, like:

<i class="fas fa-heart"></i>

Icon fonts

http://fontawesome.io/icons/

Font AWesome

You can put a Font Awesome class on any
element:

<i class="fas fa-cog"></i>

<h1 class="fas fa-thumbs-down"></h1>

Web fonts

The other way to ensure people see the correct
font is to download the font onto their computer
when they load your page.

• You do this by first downloading a font into a folder
on your website

• There are free fonts available for download at
websites like Font Squirrel or Font Spring

• After you have a copy of the font you can share it
just like any other media file on your website

https://www.fontsquirrel.com/
https://www.fontspring.com/

Web fonts

Some considerations with hosting fonts:

• May have to pay licensing fees – many fonts
cost money

• Some free fonts prohibit commercial use, or
limit the number of page views

@Font-face

If you download a font that you want to use on your site,
add @font-face before any other styles:

@font-face {
font-family: MyWebFont;
src: url('webfont.eot');

url('webfont.eot?#iefix') format('embedded-opentype’),
url('webfont.woff2') format('woff2'),
url('webfont.woff') format('woff'),
url('webfont.ttf') format('truetype'),
url('webfont.svg#svgFontName') format('svg');

}

(The good news is, font sites will provide this
chunk of CSS for you to copy into your stylesheet!)

@Font-face

@font-face {
font-family: MyWebFont;
src: url('webfont.eot');

url('webfont.eot?#iefix') format('embedded-opentype’),
url('webfont.woff2') format('woff2'),
url('webfont.woff') format('woff'),
url('webfont.ttf') format('truetype'),
url('webfont.svg#svgFontName') format('svg');

}

Different browsers support different font filetypes

• Modern browsers use woff or woff2
• IE needs eot
• Old mobile devices need ttf or svg

@Font-face

PRACTICE TIME!

Find a free font from Google fonts and use it on
your site by including the font stylesheet.

• Apply the font to some (or all) elements on the page

Include the Font Awesome stylesheet:
<link rel="stylesheet"
href="https://use.fontawesome.com/releases/v5.7.2/css/all.css" >

• Display at least two different icons

• Make them different sizes and/or colors

• Bonus points: what other CSS can you apply to the
icons?

ASSIGNMENT

https://fonts.google.com/

Responsive
design

Mobile first

An important principle of responsive design is
“Mobile First”

• Both design and code should default to mobile
resolution, adding progressive enhancements as the
screen gets larger

• One benefit of considering mobile first is that it trims
down website content to its most vital elements

• Mobile first = content first

Responsive != adaptive

Responsive design means that your design (and
code) needs to function on a continuum of devices
and screen sizes

• Although you should make care that things look great at
specific “breakpoints” (640px wide for iPhone 4/5, 768px
for iPad), it’s just as important to make sure things look
good at any resolution

• Users resize their browser windows

• Technology changes

Example – mobile

Example – desktop

Media queries

Media queries are used to apply different CSS to
different devices.

Some things you can use a media query to detect:

• The minimum or maximum screen height or width

• Whether the screen is rotated (in “landscape view”)

• If the page is being printed

• If the user is on a touch screen device

• The screen’s resolution

Media queries

Media queries have a different format than any other CSS
we’ve seen so far

They always start with @media and have curly braces that

contain all the CSS that applies to that media query rule

Multiple rules can be tested for, separated by and

@media (max-width: 480px) and (orientation: landscape) {

h1 { font-size: 20px; }

}

Media queries

To specify different styles when a webpage is being
printed, use this media query:

@media print { }

This allows you to format your page so that it looks
better on paper

• Make the page full screen

• Remove non-essential page elements (such as navigation
links or social media icons)

• Set font color to black and background color to white

Media queries

Most modern “mobile first” websites have CSS that
applies to phone-sized screens first

Then, anything specific to bigger screens goes in
media queries that test for a minimum screen
width, like this:

@media (min-width: 768px) {

}

Media queries

/* CSS that is used for phones, and also

applies generally to all resolutions */

@media (min-width: 768px) {

/* CSS that is different for tablets */

}

@media (min-width: 920px) {

/* CSS that is different for desktops */

}

Media queries - example

h1 {
font-size: 12px;
color: gray;
font-family: sans-serif;

}

@media (min-width: 768px) {

h1 { font-size: 20px; }

}

@media (min-width: 920px) {

h1 { font-size: 25px; }

}

PRACTICE TIME!

Apply a media query to an element on your
page so that it looks different when you resize
your browser screen

Things to consider doing:

• Make a two- or three-column layout only in
desktop (for example a sidebar)

• Make font sizes bigger for larger screen sizes,
especially headings like h1 or h2

ASSIGNMENT

homework

HOMEWORK

Create a footer for your webpage (see examples on following
pages)

• Add icons that link to your social media accounts using Font
Awesome (or another icon library)
• Remember you can use CSS to draw circles around them!

• Use either float or flex to put your footer content in at least two
columns

• Include a copyright as the final row in the footer

• Bonus: Switch to single-column layout for mobile only

Email me your files at beckjohnson@gmail.com

mailto:beckjohnson@gmail.com

example

• Add icons that link to your social media accounts (or to random
celebrity accounts if you prefer to stay private)

• Use either float or flex to make your icons look nice

• Use either float or flex to put your footer content in at least two
columns

• Include a copyright as the final row in the footer

https://www.evil-bikes.com/

https://www.evil-bikes.com/

Example

Example

I’ll send out a homework assignment next
Wednesday via email so you guys don’t
forget what you’ve learned!

• Practice!

• Optional: read chapters 15 and 17
of HTML and CSS: Design and
Build Websites

“HOMEWORK”

